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FIG. 6
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THERMOELECTRIC PROPERTIES BY HIGH
TEMPERATURE ANNEALING

RELATED APPLICATION

The present application claims priority to a provisional
application entitled "Improving thermoelectric properties by
high temperature annealing" filed on Apr. 6, 2004 and having
a Ser. No. 60/559,763.

FEDERALLY SPONSORED RESEARCH

This invention was made with government support
awarded by NASA under Grant Numbers NAS3-03108 and
NASA-5000486. The government has certain rights in the
invention.

BACKGROUND

The present invention is generally directed to thermoelec-
tric materials, and more particularly, to methods for enhanc-
ing thermoelectric properties of alloys.

Thermoelectric effects are routinely employed in cooling
or power generation applications. For example, thermoelec-
tric devices that utilize Seebeck effect or Peltier effect for
power generation and heat pumping are known. A variety of
alloys that exhibit thermoelectric properties can be utilized
for fabricating such devices. A thermoelectric figure-of-merit

S1,
(Z--

where S is the Seebeck coefficient, a is the electrical conduc-
tivity, and k is the thermal conductivity) is typically employed
as the indicator of an alloy's thermoelectric properties. In
some cases, a dimensionless figure-of-merit (ZT) is
employed, where T can be an average temperature of the
thermoelectric material. An alloy's thermoelectric properties
can in turn affect coefficient-of-performance (COP) and effi-
ciency of thermoelectric devices in which the allooy is incor-
porated.

Accordingly, there is a need for improving thermoelectric
properties of alloys, especially those that are routinely uti-
lized in fabricating thermoelectric devices.

SUMMARY

The present invention generally provides methods of
improving thermoelectric properties of alloys by subjecting
them to one or more high temperature annealing steps, per-
formed at temperatures at which the alloys exhibit a mixed
solid/liquid phase, followed by cooling steps. For example, in
one aspect, such a method of the invention can include sub-
jecting an alloy sample having a plurality of grains to a
temperature that is sufficiently elevated to cause partial melt-
ing of at least some of the grains. The sample can then be
cooled so as to solidify the melted grain portions such that
each solidified grain portion exhibits a chemical composition,
e.g., characterized by relative concentrations of elements
forming the alloy, that is different than that of the remainder
of the grain. The chemical composition of an alloy region can
be characterized by an average relative concentration of the
elements, which form the alloy, within that region.

The term "alloy" generally refers to a compound that is
composed of two or more elements. As this term is used

2
herein, these elements can be metals or non-metals (e.g.,
semiconductors). For example, an alloy, as used herein, can
refer to a compound composed of two or more elements in
which chemical bonds are formed between atoms of the dif-

5 ferent elements. Some examples of alloys suitable for use in
the practice of the invention include, without limitation, sili-
con/germanium, bismuth/tellurium, lead/selenium, anti-
mony/tellurium and lead/tellurium, etc.

Ina related aspect, the elevated temperature canbe selected
io to be greater than a first threshold temperature below which

the alloy would exhibit a purely solid phase and less than a
second threshold temperature above which the alloy would
exhibit a purely liquid phase. For example, the temperature
can be selected such that a point in a phase diagram of an alloy

15 sample of interest corresponding to that temperature lies
above a curve separating a purely solid thermodynamic phase
from a mixed solid/liquid phase and below a curve separating
the solid/liquid phase from a purely liquid phase.

In another aspect, the alloy is subjected to the elevated
20 temperature for a duration such that each melted portion of a

grain comprises a volume fraction of that grain less than about
50%. For example, the volume fraction can be in a range of
about I% to about 50%. In many embodiments, the duration
of the high temperature anneal can be in a range of about 1

25 minute to about 30 minutes, or in a range of about 1 minute to
about 20 minutes. It should be understood that other time
durations can also be employed so long as substantial defor-
mation of the sample can be avoided.

In another aspect, the alloy is maintained in an inert atmo-
30 sphere while exposing it to the above-described elevated tem-

perature so as to inhibit oxidation. By way of example, the
inert atmosphere can be established, for example, by flowing
an inert gas, e.g., argon, over the alloy, or placing the alloy in
a closed chamber filled with such an inert gas.

35 In another aspect, the present invention provides a method
of enhancing a thermoelectric property of an alloy having a
polycrystalline structure characterized by a plurality of grains
by annealing the alloy at a temperature that is sufficiently
elevated to cause a solid-to-liquid phase change at theperiph-

40 ery of a plurality of the grains such that liquefied boundary
layers are formed that exhibit an average chemical composi-
tion different from that of unliquified core portions of corre-
sponding grains (the core portions retain their solid phase at
the elevated temperature). The alloy is then cooled to solidify

45 the liquid boundary layers.
In a related aspect, the elevated temperature can be selected

to be in a range in which the alloy would exhibit a mixed
solid/liquid thermodynamic phase, e.g., above temperatures
at which the alloy's phase diagram (corresponding to a par-

50 ticular elemental composition of an alloy sample undergoing
annealing) exhibits a purely solid phase and below tempera-
tures at which the phase diagram exhibits a purely liquid
phase.

The duration of the annealing step can be selected such that
55 a liquefied grain boundary layer would comprise a fraction of

the grain volume less than about 50%, e.g., in a range of about
1 % to about 50%. For example, the annealing duration can be
in a range of about 1 minute to about 30 minutes, or in a range
of about 1 minute to about 20 minutes.

60 In another aspect, the present invention provides a method
of improving a thermoelectric figure-of-merit of a polycrys-
talline alloy sample that is characterized by a plurality of
grains. The method calls for annealing the alloy at a suffi-
ciently elevated first temperature so as to liquefy peripheral

65 layers of a plurality of its grains while maintaining their core
portions in a solid phase. This is followed by cooling the
sample to solidify the liquefied layers into shells surrounding
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the cores. Each shell has an average chemical composition,
e.g., characterized by relative concentrations of the elements
forming the alloy, that is different than that of the core it
surrounds. Subsequently, the alloy is annealed again at an
elevated temperature that is less than the first anneal tempera-
ture but still sufficiently high so as to liquefy peripheral layers
of the grain shells, generated in the previous annealing/cool-
ing cycle, while maintaining the remainder of the shells and
their associated cores in a solid phase. The second annealing
step can thenbe followedby cooling the sample to solidify the
liquefied peripheral layers. In this manner, the resultant grains
include three compositional phases: a core portion, a shell
surrounding the core and a boundary layer that in turn sur-
rounds the shell. That is, the above annealing/cooling cycles
enhance the compositional heterogeneity of the sample.

In a related aspect, the annealing temperatures are selected
to be in a range in which the alloy exhibits a mixed solid/
liquid phase. For example, the first annealing temperature can
be selected to be greater than temperatures at which a phase
diagram of the alloy corresponding to the elemental compo-
sition of the alloy sample exhibits a purely solid phase and
less than temperatures at which the phase diagram of the
sample exhibits a purely liquid phase. Further, the second
annealing temperature can be selected to be greater than
temperatures at which the alloy's phase diagram correspond-
ing to the elemental composition of the grain shells, formed in
the previous annealing/cooling cycle, exhibits a purely solid
phase and less than temperatures at which the phase diagram
corresponding to the elemental composition of the grain
shells exhibits a purely liquid phase.

The number of iterations of the annealing/cooling cycles is
not limited to that described above but can be selected based
on, among other factors, the type of alloy, the degree of
desired enhancement of compositional heterogeneity, and the
phase diagram of the alloy.

In another aspect, the present invention provides a thenno-
electric composition comprising a polycrystalline alloy that is
composed of at least two chemical elements and is character-
ized by a plurality of crystalline grains. At least some of the
grains have peripheral portions surrounding core portions
such that each peripheral portion exhibits an average relative
concentration of the two elements that is different from that of
its corresponding core portion.

In a related aspect, some of the peripheral portions of the
thermoelectric composition can exhibit a multi-shell struc-
ture such that different shells have different chemical com-
positions, e.g., characterized by different relative concentra-
tions of elements forming the alloy.

In another aspect, the present invention provides a method
of reducing thermal conductivity in a thermoelectric alloy
with a plurality of grains by thermally cycling the alloy
between an upper temperature in which the alloy exhibits a
mixed liquid-solid phase and a lower temperature in which
the alloy exhibits a solid phase such that at least a plurality of
the grains are partially melted and peripheral boundary layers
are formed around the partially melted grains. The boundary
layers have a different chemical composition than core
regions of the partially melted grains. The thermal cycling can
be repeated so as to form multiple shells around at least some
of the partially melted grains, wherein each shell has a differ-
ent chemical composition.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a flow chart depicting various steps in a method
according to an exemplary embodiment of the invention for
improving thermoelectric properties of an alloy,

4
FIG. 2A schematically illustrates a few grains of an alloy

sample prior to application of the method described in FIG. 1,
FIG. 2B schematically illustrates the grains of FIG. 2 after

application of a high temperature annealing step according to
5 the method of FIG. 1 has caused melting of peripheral layers

of the grains,
FIG. 2C schematically illustrates the grains of FIG. 3 after

solidification of the melted grain portions,
FIG. 3 schematically depicts a grain of an alloy subjected

10 to an high temperature annealing and cooling cycle according
to an embodiment of the invention, exhibiting three compo-
sitional regions characterized by a core, a peripheral shell and
a gradient region connecting the shell to the core,

FIG. 4 is a flow chart depicting various steps in another
15 embodiment of a method of the invention for improving ther-

moelectric properties of alloys,
FIG. 5A schematically depicts a few grains of an alloy

before application of the annealing and cooling cycles
described in FIG. 4 thereto,

20 FIG. 5B schematically illustrates the grains of FIG. 5A
after application of the first annealing/cooling cycle of the
method of FIG. 4 thereto,

FIG. 5C schematically illustrates the grains of FIG. 5B
after application of the second annealing/cooling cycle of the

25 method described in FIG. 4 thereto,
FIG. 6 is a SiGe phase diagram,
FIG. 7 is a PbSe phase diagram,
FIG. 8 is a BiTe phase diagram,

30	 FIG. 9 is a PbTe phase diagram,
FIG. 10 is a SbTe phase diagram, and
FIG. 11 schematically illustrates an oven in which an alloy

sample can be subjected to a high temperature annealing in
accordance with the teachings of the invention.

35
DETAILED DESCRIPTION

The present invention is generally directed to methods for
enhancing thermoelectric properties of alloys and the result-

40 ant enhanced thermoelectric compositions. In many embodi-
ments, an alloy sample can be subjected to an elevated tem-
perature to cause partial melting of its grains, especially at
portions proximate to grain boundaries such that the melted
portions would exhibit a different average chemical compo-

45 sition than those of the core portions of the grains. The alloy
sample can then be cooled to solidify the melted portions,
thereby imparting an enhanced compositional heterogeneity
thereto. It has been discovered that this process of partial
melting followed by solidification can enhance the alloy's

50 thermoelectric properties, as discussed in more detail below.
Exemplary embodiments of the invention described below
further elucidate various aspects of the invention.

With reference to a flowchart 10 of FIG. 1, in a method
according to one exemplary embodiment of the invention for

55 improving a thermoelectric property of an alloy, in step 12, a
solid sample of the alloy is subjected to a temperature that is
sufficiently elevated to cause a solid-to-liquid phase change
of peripheral layers (herein also referred to as boundary lay-
ers) of at least some grains forming the alloy's polycrystalline

60 structure while ensuring that core portions of these grain
retain their solid phase. The temperature is selected such that
each liquefied grain boundary layer would exhibit an average
chemical composition that is different than that of its associ-
ated core portion, which maintains its solid phase at the

65 elevated temperature. Subsequently, in step 12, the alloy
sample is cooled so as to solidify the liquid peripheral grain
layers.
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6
	In many embodiments, the high temperature annealing step	 noticeable structural deformation of the sample. In some

	

can be performed in an inert atmosphere, e.g., an atmosphere 	 embodiments, the annealing duration can be selected such

	

of argon, to inhibit oxidation of the sample, which may oth- 	 that at a chosen elevated temperature, a liquefied peripheral

	

erwise readily occur at the elevated annealing temperature. 	 layer of a grain would constitute a fraction of the grain's
The inert atmosphere can be established, for example, by 5 volume less than about 50%. For example, the annealing

	

flowing an inert gas over the sample or placing the sample in
	

duration can be chosen such that the volume of the melted

	

an enclosure filled with an inert gas. In other embodiments, 	 portion of a grain would constitute a fraction of the grain's

	

the annealing step can be performed in a non-inert atmo- 	 volume in a range of about 1% to about 50%.

	

sphere. Further, the ambient pressure can be selected to be at
	

In some embodiments, the annealing temperature is kept a
any suitable value, e.g., in a range of about 10 Torr to about 2 io few percent (e.g., in a range of about 5% to 20%) below a
atm.	 temperature threshold above which the sample exhibits a

	

In many embodiments, the above elevated annealing tem- 	 purely liquid phase while ensuring that the temperature

	

perature is selected to be higher than temperatures at which a 	 remains within a region characterized by a mixed solid/liquid

	

phase diagram of the alloy corresponding to the average 	 phase. This temperature selection can ensure that structural
chemical composition of the sample exhibits a purely solid 15 deformations, if any, caused by the high temperature anneal

	

phase and less than those temperatures at which the phase	 would be minimal.

	

diagram exhibits a purely liquid phase. In other words, the
	

It has been discovered that subjecting an alloy to the above

	

elevated temperature can be chosen to be in a range in which
	

high temperature annealing step can enhance its thermoelec-

	

the alloy sample exhibits a mixed solid/liquid phase (i.e., a 	 tric properties. As noted above, a thermoelectric figure-of-
phase characterized by a mixture of solid and liquid).	 20 merit (Z), or a dimensionless figure-of-merit (ZT), can be

	

The occurrence of partial melting of the alloy's grains as a	 employed as indicators of coefficient-of-performance (COP)

	

result of the above high temperature annealing step can be
	

(for refrigeration applications) or efficiency (for power gen-

	

perhaps better understood by reference to FIGS. 2A and 2B. 	 eration applications) of a thermoelectric alloy. As discussed

	

In particular, FIG. 2A schematically illustrates a plurality of
	

in more detail below, the above-described high temperature
grains 16,18, and 20 of an alloy on which the teachings of the 25 annealing of an alloy can advantageously increase its Z, or

	

invention can be practiced prior to being subjected to the
	

ZT, by decreasing the alloy's thermal conductivity and/or

	

above-described elevated temperature. FIG. 2B schemati- 	 enhancing its electrical conductivity. In many embodiments,

	

cally shows that subjecting the grains to the elevated tempera- 	 the alloy's thermal conductivity is decreased while its elec-

	

ture can cause formation of liquefied shells 16a, 18a, and 20a	 trical conductivity is increased (or remains substantially
within each grain, which surround, respectively, solid core so unchanged)

	

portions 16b, 18b and 20b. The core portions retain their solid
	

Without being limited to any particular theory, the methods

	

phase at the elevated temperature. In other words, the high
	

of the invention can impart an enhanced compositional het-

	

temperature annealing step can cause partial melting of the	 erogeneity to an alloy (e.g., they cause formation of addi-

	

grains at portions in proximity of the grain boundaries. With
	

tional compositional phases and their associated grain bound-
reference to FIG. 2C, subsequent cooling of the sample and 35 aries), thereby significantly enhancing phonon scattering.

	

solidification of the liquefied portions results in grains having
	

The increased phonon scattering can in turn result in a

	

peripheral layers 16c, 18c and 20c, (layers formed as the
	

decrease in the alloy's thermal conductivity. Further, in many

	

liquefied shells solidify), each of which exhibits an average 	 cases, the sample's electrical conductivity is enhanced (or

	

chemical composition that is different than that of its corre- 	 remains substantially unchanged). These changes in the
sponding grain core. In other words, the above annealing and 4o alloy's thermal and/or electrical conductivities can in turn

	

cooling steps can increase compositional heterogeneity of the 	 result in an improved thermoelectric figure-of-merit. By way

	

grains. The different chemical composition of the peripheral
	

of example, the methods of the invention can improve the

	

layers relative to the grain cores can be generally character- 	 thermoelectric ZT of an alloy by a factor in a range of about

	

ized by a different relative concentration of the elements
	

10 percent to about 400 percent, or more preferably in a range
forming the alloy.	 45 of about 20 percent to about 400 percent.

	

Although a sharp boundary is depicted herein between
	

In some embodiments, the above high temperature anneal-

	

each newly formed peripheral layer of a crystalline grain (i.e., 	 ing and cooling steps are iterated, albeit with each subsequent

	

layers formed as the liquid shells solidify) and the grain's	 annealing step performed at a lower temperature than a pre-

	

core, the grain's chemical composition typically exhibits a 	 vious annealing step, so as to generate a plurality of grain
gradual change, that is, a gradient, from the peripheral layer to 5o regions having different average chemical compositions from

	

the core. For example, as shown schematically in FIG. 3, in 	 one another and from that of the grain core. By way of

	

some cases, a heterogeneous grain 22 formed as a result of the 	 example, with reference to a flow chart 24 of FIG. 4 and FIG.

	

above annealing and cooling steps may be characterized by a
	

5A-5C, in one such embodiment, in an initial step 26, an alloy

	

peripheral portion 22a and a core portion 22b having different	 sample's temperature is raised to a value sufficiently elevated
average chemical compositions and a transitional portion 22c 55 to cause partial melting of a plurality of grains 34 in regions

	

that exhibits a compositional gradient linking the peripheral
	

proximate to the grain boundaries (while only a few grains are
composition to the core's composition. 	 shown schematically as squares for ease of illustration, those

	

In many embodiments, the duration of the high tempera- 	 skilled in the art appreciate it that a sample can include many

	

ture annealing step is selected such that the above-described
	

more grains having typically irregular shapes). As in the
partial melting would occur without a substantial change in 60 previous embodiment, this elevated temperature can be

	

the sizes of the grains. Although this time duration can gen- 	 selected to be in a range in which a phase diagram of the alloy

	

erally depend on the characteristics of an alloy sample, e.g., 	 sample exhibits a solid/liquid phase. In a subsequent step 28,
	its chemical composition and its dimensions, it is typically	 the high temperature annealing is followed by cooling the

	

selected to be in a range of about 1 minute to about 20
	

sample to solidify the liquefied regions into shells 36 sur-
minutes, or in a range of about 1 minute to about 10 minutes. 65 rounding grain cores 38, shown schematically in FIG. 5B.

	

In general, the annealing duration is selected to allow suffi-	 Referring again to the flow chart 24, in a subsequent step

	

cient partial melting of the grains to occur while avoiding
	 30, the sample is subjected to another high temperature
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annealing step at a temperature lower than that utilized the
first annealing step 26, but still sufficiently elevated to cause
partial melting of the shells 36 generated by solidifying the
grain portions melted during the first high temperature
anneal. For example, the temperature can be selected to be in
a region in which the phase diagram of an alloy with the
average chemical composition of the shells 34 exhibits a
solid/liquid phase (i.e., greater than a low threshold tempera-
ture below which the shells exhibit a purely solid phase and
less than a high threshold temperature above which the shells
exhibit a purely liquid phase) but less than the temperature
utilized in the previous annealing step. Following this second
hightemperature annealing, in step 32, the sample is cooledto
solidify the liquefied portions into peripheral regions 40,
shown schematically in FIG. 5C, having a different average
chemical composition than those of the shell portions 36 and
the core portions 38. In this manner, three compositional
phases are generated within the grains that impart a high
degree of heterogeneity to the grains, thereby enhancing ther-
moelectric properties of the sample.

Although sharp boundaries are schematically depicted in
FIG. 5C between grain regions 40 and 36, and between the
regions 36 and 38, in many embodiments, the transition
between any two of these regions can be characterized by a
compositional gradient. Further, similar to the previous
embodiment, each annealing step can be performed for a
duration sufficient to cause the desired partial melting of the
grains but short enough to avoid substantial structural defor-
mation of the sample. For example, each annealing step can
be performed for a time duration in a range of about 1 minute
to about 20 minutes, or in a range of about 1 minute to about
10 minutes.

Further, the number of iterations of the annealing/cooling
cycles is not limited to that described above. In particular,
additional compositional phases can be generated in the
grains by subjecting the alloy to further annealing/cooling
cycles in a manner described above. In addition, similar to the
previous embodiment, the high temperature annealing steps
are preferably performed in an inert atmosphere to inhibit
oxidation of the sample.

The methods of the invention can be applied to a variety of
different alloys to improve their thermoelectric properties.
For example, the above annealing/cooling steps can be
applied to SiGe alloys. FIG. 6 shows the phase diagram of
SiGe alloys for a range of relative concentrations of Si and Ge
(the upper horizontal axis is based on relative atomic concen-
tration of silicon in the alloy and the lower horizontal axis is
based on relative weight concentration of silicon). The phase
diagram is characterized by two phase boundary curves A and
B. The curve  separates a portion 42 of the phase diagram in
which the alloys exhibit a purely solid phase from a portion 44
characterized by a mixed liquid/solid phase. And the curve B
separates the liquid/solid phase portion 44 from a portion 46
of the phase diagram in which the alloys exhibit a purely
liquid phase. For each relative concentration of Si and Ge, the
methods of the invention can be practiced by annealing the
alloy at a temperature corresponding to the liquid/solid phase
portion 44.

By way of example and to show the efficacy of the methods
of the invention for enhancing thermoelectric properties of
alloys, a sample of Si o $Geo 2 (relative concentrations are
given in terms of atomic percent) was subjected to a tempera-
ture of about 1320° C. for about 10 minutes. As can be seen
from the phase diagram, a Si/Ge alloy having a relative Si
atomic concentration of 0.8 and a relative Ge atomic concen-
tration of 0.2 exhibits a mixed solid/liquid phase at this tem-
perature. That is, subjecting the Si o $Geo 2 alloy to this

8
elevated temperature causes partial melting of the alloy's
grains. As can be ascertained from the phase diagram, the
liquefied and solid portions exhibit different relative concen-
trations of silicon and germanium at this temperature. Sub-

5 sequently, the Si o $Geo 2 sample was cooled to solidify the
liquefied portions. Table 1 below presents the measured ther-
moelectric ZT for this sample relative to a similar untreated
control Sio $Geo 2 sample:

10	 TABLE 1

Electrical
Thermal	 Seebeck	 Conduc-

SiosGeOZ	Conductivity Coefficient 	 tivity	 ZT
(n-type)	 (W/mK)	 (ltV/K)	 (S/m)	 (300 K)

15
Control (not subjected	 7.6	 —96	 33,000	 0.012
to annealing)
Annealed at 1320° C.	 6.9	 —100	 100,000	 0.046

20 
The data presented in the above table indicates that the

annealed sample exhibits a thermal conductivity that is about
9% less than that of the untreated sample, and an electrical
conductivity that is significantly greater than that of the
untreated sample. Accordingly, the annealed sample exhibits

25 
a figure-of-merit (ZT) that is significantly enhanced relative
to that of the untreated sample.

By way of another example, Table 2 below presents exem-
plary comparative data corresponding to thermoelectric prop-
erties of a Si, gGeo , sample subjected to an annealing/cool-

30 ing cycle in accordance with the teachings of the invention
and a control sample having the same relative atomic concen-
trations of silicon and germanium. More specifically, the
annealed sample was subjected to an elevated temperature of
1365° C. for about 10 minutes and subsequently cooled.

35 Reference to the phase diagram of FIG. 6 shows that a SiGe
alloy having a relative silicon atomic concentration of 0.9 and
a relative germanium atomic concentration of 0.1 exhibits a
liquid/solid phase at this elevated temperature. In other
words, this temperature lies in a range of about 1350° C. and

40 1395° C., which characterizes temperature values above
those at which the Si, gGeo , alloy sample exhibits a purely
solid phase and below those at which the sample exhibits a
purely liquid phase.

45	 TABLE 2

Electrical
Thermal	 Seebeck	 Conduc-

Sio,Geo 1	 Conductivity Coefficient	 tivity	 ZT
(n-type)	 (W/mK)	 (ltV/K)	 (S/m)	 (300 K)

50	 Control (not subjected	 9.73 —140	 105,200	 0.063
to annealing)
Annealed at 1345° C.	 7.67 —155	 76,800	 0.072
Annealed at 1365° C.	 6.00 —151	 84,500	 0.096

55 The data presented in the above Table 2 indicates that the
annealed sample exhibits a lower thermal conductivity and a
higher electrical conductivity relative to the control sample
(i.e., the sample that is not annealed), resulting in a thermo-
electric ZT that is significantly greater than that of the control

60 sample.
It should be understood that the above exemplary data is

provided only for illustrative purposes and is not intended to
necessarily show optimal enhancements of an alloy's ther-
moelectric properties that can be achieved by employing the

65 teachings of the invention.
Further, the applications of the methods of the invention are

not limited to SiGe alloys. In fact, as noted above, they can be



US 7,591,913 B2
9

practiced on a variety of alloys to enhance their thermoelec-
tric properties. Some examples of such alloy systems include,
without limitation, Pb Te, Sb Te, Pb Se and Bi Te,
which are routinely utilized in forming thermoelectric
devices. For example, with reference to a phase diagram of
Pb Se (at an ambient pressure of 1 atm) shown in FIG. 7, a
Pb, 4Se, e alloy sample can be subjected to a high tempera-
ture above 220° C. within a range characterized by a mixed
solid/liquid phase (e.g., within region 48), and subsequently
cooled. For example, the elevated temperature can be main-
tained above about 220° C. (below which the sample would
exhibit a purely solid phase characterized by two compo-
nents, namely, PbSe and Se) and below about 678° C. (above
which the sample would exhibit liquid phase). Similar to the
previous embodiments, the duration of the high temperature
exposure is selected so as to avoid any noticeable structural
deformation of the sample. Similarly, the phase diagrams of
BiTe, PbTe, and SbTe (at a pressure of 1 arm), presented
respectively in FIGS. 8, 9 and 10, show phase regions in
which partial melting of the alloy can be achieved, that is,
phase regions that can be utilized for practicing the teachings
of the invention for improving the alloy's thermoelectric
properties.

The above methods of the invention can be practiced not
only on bulk alloys but also on thermoelectric compositions
exhibiting nano-sized structures. Some examples of such
nanocomposite thermoelectric materials are disclosed in a
co-pending U.S. patent application Ser. No. 10/977,363
entitled "Nanocomposites With High Thermoelectric Figures
of Merit" filed on Oct. 29, 2004, which is herein incorporated
by reference in its entirety. These nanocomposite materials
typically exhibit a high degree of heterogeneity and good
thermoelectric properties. Their thermoelectric properties,
however, can be further enhanced by employing high tem-
perature annealing steps followed by cooling steps, such as
those described in detail above.

A variety of systems can be utilized to practice the methods
of the invention, such as the embodiments described above.
By way of example, FIG. 11 schematically depicts an oven 50
that can be employed in many embodiments of the invention
for exposing an alloy sample 52 to an elevated temperature
selected in a manner described above to cause partial melting
of the alloy's grains. In this exemplary embodiment, an input
port 54 allows introducing a gas, preferably a noble gas such
as argon, into the oven's chamber and an output port 56 allows
egress of the gas from the chamber. In this manner, a flow of
a suitable gas can be established over the alloy sample. The
gas is typically selected to generate an inert atmosphere
within the oven chamber so as to inhibit oxidation of the
sample, which otherwise may readily occur at elevated tem-
peratures. A variety of ovens suitable for use in the practice of
the invention are known.

Those having ordinary skill in the art will appreciate that
various modifications can be made.

What is claimed is:
1. A method of improving a thermoelectric property of an

alloy having a plurality of grains, comprising
heating the alloy to a temperature at which the alloy exhib-

its a mixed solid/liquid phase so as to cause partial
melting of at least some of the grains such that a bound-
ary layer of a grain is melted about an unmelted core,

cooling the alloy such that the melted portions solidify and
exhibit a chemical composition different than that of the
unmelted cores,

wherein said heating temperature is selected to be less than
a threshold temperature above which the alloy exhibits a

10
purely liquid phase by a value in a range of about 5% to
about 20% of the threshold temperature.

2. The method of claim 1, wherein said different chemical
composition is characterized by a different average relative

5 concentration of chemical elements forming the alloy.
3. The method of claim 1, wherein the step of heating the

alloy further comprises subjecting the alloy to an elevated
temperature for a duration such that the melted portion of a
grain comprises a volume fraction of the grain less than about

10 50%.
4. The method of claim 3, further comprising selecting said

duration such that a melted grain portion comprises a volume
fraction of the grain in a range of about 1% to about 50%.

5. The method of claim 3, further comprising selecting said
15 duration to be in a range of about 1 minute to about 20

minutes.
6. The method of claim 1, wherein said improved thermo-

electric property is characterized by the dimensionless ther-
moelectric ZT.

20 7. The method of claim 6, wherein said partial meting and
solidification of the melted portions results in an increase in
said figure-of-merit in a range of about 10 percent to about
400 percent.

8. The method of claim 1, further comprising selecting said
25 alloy to be any of a silicon/germanium, a bismuth/tellurium,

a lead/selenium, antimony/tellurium or a lead/tellurium alloy.
9. The method of claim 1, further comprising maintaining

the alloy in an inert atmosphere while exposing it to said
elevated temperature.

so 10. The method of claim 9, wherein the step of maintaining
the alloy in an inert atmosphere comprises flowing an inert
gas over the sample.

11.A method for enhancing a thermoelectric property of an
35 alloy having a polycrystalline structure characterized by a

plurality of grains, comprising:
annealing the alloy at a temperature at which the alloy

exhibits a mixed solid/liquid thermodynamic phase and
sufficiently elevated to cause a solid-to-liquid phase

40 
change at the periphery of a plurality of the grains such
that liquefied boundary layers are formed that exhibit an
average chemical composition different than that of
unliquified core portions of the corresponding grains,
and

45	 cooling said alloy so as to solidify said liquid boundary
layers,

wherein said heating temperature is selected to be less than
a threshold temperature above which the alloy exhibits a
purely liquid phase by a value in a range of about 5% to

50	 about 20% of the threshold temperature.
12. The method of claim 11, further comprising selecting a

duration of said annealing step such that a liquefied grain
boundary layer comprises a fraction of the grain volume less
than about 50%.

55 13. The method of claim 11, further comprising selecting a
duration of said annealing step such that each liquefied
boundary layer comprises a fraction of the grain volume in a
range of about 1% to about 50%.

14. The method of claim 11, further comprising selecting
60 said alloy to be any of a SiGe, a bismuth telluride, a lead

selenide, an antimony telluride or a lead telluride alloy.
15. The method of claim 11, further comprising selecting

said alloy to be Sio $Geo 2 and selecting said annealing tem-
perature to be in a range of about 1285° C. to about 1350° C.

65 16. The method of claim 11, further comprising perform-
ing said annealing step for a duration in a range of about 1
minute to about 30 minutes.
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17. The method of claim 11, further comprising perform-
ing said annealing step for a duration in a range of about 1
minute to about 20 minutes.

18. A method of improving a thermoelectric figure-of-
merit of a polycrystalline alloy characterized by a plurality of
grains, comprising

annealing the alloy at a sufficiently elevated first tempera-
ture so as to liquefy peripheral layers of a plurality of its
grains while maintaining core portions of these grains in
a solid phase,

cooling said alloy to solidify said liquefied layers into
shells surrounding said solid cores, each shell having a
different average chemical composition than the core it
surrounds,

subsequently, annealing the alloy at a sufficiently elevated
second temperature less than the first temperature so as
to liquefy peripheral layers of the shells while maintain-
ing the remainder of the shells and their associated cores
in a solid phase, and

cooling said alloy to solidify said liquefied peripheral lay-
ers,

wherein said first elevated temperature is selected to be less
than a threshold temperature above which the alloy
exhibits a purely liquid phase by a value in a range of
about 5% to about 20% of the threshold temperature.

19. The method of claim 18, wherein said first and second
elevated temperatures are selected to be in a range in which
said alloy exhibits a mixed solid/liquid phase.

12
20. The method of claim 18, wherein said shells exhibit an

average chemical composition different than the cores they
surround.

21. The method of claim 20, wherein each peripheral layer
5 of a shell has an average chemical composition different that

that of the remainder of the shells.
22. A method of reducing thermal conductivity in a ther-

moelectric alloy with a plurality of grains, the method com-
prising

10 thermally cycling the alloy between an upper temperature
in which the alloy exhibits a mixed liquid-solid phase
and a lower temperature in which the alloy exhibits a
solid phase such that at least a plurality of the grains are
partially melted and peripheral boundary layers are

i5 formed around the partially melted grains, said bound-
ary layers having a different chemical composition than
core regions of the partially melted grains,

wherein said upper temperature is selected to be less than a
20	 threshold temperature above which the alloy exhibits a

purely liquid phase by a value in a range of about 5% to
about 20% of the threshold temperature.

23. The method of claim 22, wherein thermal cycling is
repeated to form multiple shells around at least some of the

25 partially melted grains, each shell having a different chemical
composition.
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